From The Cover: Control of dendrite arborization by an Ig family member, dendrite arborization and synapse maturation 1 (Dasm1)

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control of dendrite arborization by an Ig family member, dendrite arborization and synapse maturation 1 (Dasm1).

Development of both dendrites and axons is important for the formation of neuronal circuits, because dendrites receive information and the axon is responsible for sending signals. In the past decade, extensive studies have revealed many molecules underlying axonal outgrowth and pathfinding. In contrast, much less is known about the molecular mechanisms that control dendrite development. Here we...

متن کامل

The immunoglobulin family member dendrite arborization and synapse maturation 1 (Dasm1) controls excitatory synapse maturation.

In the developing mammalian brain, a large fraction of excitatory synapses initially contain only N-methyl-D-aspartate receptor and thus are "silent" at the resting membrane potential. As development progresses, synapses acquire alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPA-Rs). Although this maturation of excitatory synapses has been well characterized, the molecular...

متن کامل

The protein dendrite arborization and synapse maturation 1 (Dasm-1) is dispensable for dendrite arborization.

The development of a highly branched dendritic tree is essential for the establishment of functional neuronal connections. The evolutionarily conserved immunoglobulin superfamily member, the protein dendrite arborization and synapse maturation 1 (Dasm-1) is thought to play a critical role in dendrite formation of dissociated hippocampal neurons. RNA interference-mediated Dasm-1 knockdown was pr...

متن کامل

Dendrite arborization requires the dynein cofactor NudE

The microtubule-based molecular motor dynein is essential for proper neuronal morphogenesis. Dynein activity is regulated by cofactors, and the role(s) of these cofactors in shaping neuronal structure are still being elucidated. Using Drosophila melanogaster, we reveal that the loss of the dynein cofactor NudE results in abnormal dendrite arborization. Our data show that NudE associates with Go...

متن کامل

RAB-10-Dependent Membrane Transport Is Required for Dendrite Arborization

Formation of elaborately branched dendrites is necessary for the proper input and connectivity of many sensory neurons. Previous studies have revealed that dendritic growth relies heavily on ER-to-Golgi transport, Golgi outposts and endocytic recycling. How new membrane and associated cargo is delivered from the secretory and endosomal compartments to sites of active dendritic growth, however, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences

سال: 2004

ISSN: 0027-8424,1091-6490

DOI: 10.1073/pnas.0405370101